Optimized Product Quantization (OPQ) enhances Product Quantization by optimizing space decomposition and codebooks, leading to lower quantization distortion and higher accuracy in vector search. OPQ is widely used in advanced vector databases for improving recall and search quality.
No content provided
Locality-Sensitive Hashing (LSH) is an algorithmic technique for approximate nearest neighbor search in high-dimensional vector spaces, commonly used in vector databases to speed up similarity search while reducing memory footprint.
Online Product Quantization (O-PQ) is a variant of product quantization designed to support dynamic or streaming data. It enables adaptive updating of quantization codebooks and codes in real-time, making it suitable for vector databases that handle evolving datasets.
Product Quantization (PQ) is a technique for compressing high-dimensional vectors into compact codes, enabling efficient approximate nearest neighbor (ANN) search in vector databases. PQ reduces memory footprint and search time, making it a foundational algorithm for large-scale vector search systems.
Spectral Hashing is a method for approximate nearest neighbor search that uses spectral graph theory to generate compact binary codes, often applied in vector databases to enhance retrieval efficiency on large-scale, high-dimensional data.
Amazon OpenSearch's k-NN plugin enables scalable, efficient vector search using ANN algorithms (IVF, HNSW) directly within a managed OpenSearch cluster. It is directly relevant for building, querying, and scaling vector databases on AWS.